Interface Modulation of MoS2/Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis

2020 
Developing efficient earth-abundant MoS2 based hydrogen evolution reaction (HER) electrocatalysts is important but challenging due to the sluggish kinetics in alkaline media. Herein, a strategy to fabricate a high-performance MoS2 based HER electrocatalyst by modulating interface electronic structure via metal oxides is developed. All the heterostructure catalysts present significant improvement of HER electrocatalytic activities, demonstrating a positive role of metal oxides decoration in promoting the rate-limited water dissociation step for the HER mechanism in alkaline media. The as-obtained MoS2 /Ni2 O3 H catalyst exhibits a low overpotential of 84 mV at 10 mA cm-2 and small charge-transfer resistance of 1.5 Ω in 1 m KOH solution. The current density (217 mA cm-2 ) at the overpotential of 200 mV is about 2 and 24 times higher than that of commercial Pt/C and bare MoS2 , respectively. Additionally, these MoS2 /metal oxides heterostructure catalysts show outstanding long-term stability under a harsh chronopotentiometry test. Theoretical calculations reveal the varied sensitivity of 3d-band in different transition oxides, in which Ni-3d of Ni2 O3 H is evidently activated to achieve fast electron transfer for HER as the electron-depletion center. Both electronic properties and energetic reaction trends confirm the high electroactivity of MoS2 /Ni2 O3 H in the adsorption and dissociation of H2 O for highly efficient HER in alkaline media.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    31
    Citations
    NaN
    KQI
    []