A Mirror Bilateral Neuro-Rehabilitation Robot System with the sEMG-Based Real-Time Patient Active Participant Assessment

2021 
In this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation system with surface electromyography (sEMG)-based patient active force assessment was proposed for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-based human–robot interface was designed to facilitate the bilateral isometric force output training task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric force estimation method was implemented into the proposed system for real-time affected side force assessment and participation evaluation. To assist the affected side limb efficiently and precisely, a mirror bilateral control framework was presented for bilateral limb coordination. Preliminary experiments were conducted to evaluate the estimation accuracy of force estimation method and force tracking accuracy of system performance. The experimental results show the proposed force estimation method can efficiently calculate the elbow joint force in real-time, and the affected side limb of patients can be assisted to track output force of the non-paretic side limb for better limb coordination by the proposed bilateral rehabilitation system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []