Water dispersion interactions strongly influence simulated structural properties of disordered protein states.

2015 
Many proteins can be partially or completely disordered under physiological conditions. Structural characterization of these disordered states using experimental methods can be challenging, since they are composed of a structurally heterogeneous ensemble of conformations rather than a single dominant conformation. Molecular dynamics (MD) simulations should in principle provide an ideal tool for elucidating the composition and behavior of disordered states at an atomic level of detail. Unfortunately, MD simulations using current physics-based models tend to produce disordered-state ensembles that are structurally too compact relative to experiments. We find that the water models typically used in MD simulations significantly underestimate London dispersion interactions, and speculate that this may be a possible reason for these erroneous results. To test this hypothesis, we create a new water model, TIP4P-D, that approximately corrects for these deficiencies in modeling water dispersion interactions while ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    459
    Citations
    NaN
    KQI
    []