Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash

2018 
Abstract The removal of Ni (II), Cu (II), Zn (II), and Co (II) ions from simulated aqueous solutions using calcium silicate powder (CSP), a new by-product derived from the production of alumina from coal ash, has been studied. CSP showed high efficiency for the removal of these metal ions. The maximum adsorptions were 420.17, 680.93, 251.89, and 235.29 mg/g for Ni (II), Cu (II), Zn (II), and Co (II), respectively. Total (100%) removal of Ni (II) was obtained when the initial concentration was 100 mg/L, indicating that CSP was highly effective even at an extremely low concentration. Adsorption isotherms and kinetics have been studied using different models. It has been found that the adsorption isotherms can best be described on the basis of the Langmuir model, with the kinetics of adsorption following a pseudo-second-order reaction process. The calcium ion concentration was examined before and after adsorption to investigate the mechanism of removal of the heavy metal ions. It was found that the removal of heavy metal ions is mainly achieved through ion-exchange, combined with some adsorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    65
    Citations
    NaN
    KQI
    []