Study of genotoxic and cytotoxic effects after acute and chronic exposures to industrial sewage sludge on Biomphalaria glabrata hemocytes

2020 
Abstract Industrial development has provided numerous benefits to improve quality of life in modern times, however, it has also led to the development and use of a large number of toxic chemicals which have caused damage to various ecosystems. Consequently, knowledge of techniques and organisms that can be used to monitor, identify and quantify environmental pollutants has become increasingly relevant. Therefore, the objective of this study was to use the mollusk Biomphalaria glabrata to analyze biomarker and biomonitoring parameters of industrial sewage sludge. To perform the tests, concentrations of 50, 100, 150 and 500 mg L−1 of industrial sewage sludge were standardized. All the tests were performed after the animals were exposed to the sludge in acute and chronic forms. Embryos exposure to sludge did not show a significant percentage of the animals non-viable when compared to the control group. Subsequently, hemocytes were analyzed for the presence of cytoplasmic and nuclear alterations. Finally, the comet test was performed to quantify the genotoxic damage caused by exposure to industrial sludge. Analysis hemocytes showed a significant number of cellular alterations was observed, mainly due to the high frequency of apoptosis. Moreover, during the analysis of nucleoids several degrees of nuclear damage were identified, with the groups exposed to the highest concentrations presenting the greatest genotoxic damage. Thus, we can conclude that the parameters evaluated in the mollusk Biomphalaria glabrata have proven to be a good tool, along with other techniques and complementary organisms, to assist aspects related to biomonitoring of freshwater ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []