Subordination model of anomalous diffusion leading to the two-power-law relaxation responses

2011 
We derive a general pattern of the nonexponential, two-power-law relaxation from the compound subordination theory of random processes applied to anomalous diffusion. The subordination approach is based on a coupling between the very large jumps in physical and operational times. It allows one to govern a scaling for small and large times independently. Here we obtain explicitly the relaxation function, the kinetic equation and the susceptibility expression applicable to the range of experimentally observed power-law exponents which cannot be interpreted by means of the commonly known Havriliak-Negami fitting function. We present a novel two-power relaxation law for this range in a convenient frequency-domain form and show its relationship to the Havriliak-Negami one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    16
    Citations
    NaN
    KQI
    []