Role of Metal Centers in Tuning the Electronic Properties of Graphene-Based Conductive Interfaces

2019 
A major bottleneck in the fabrication of efficient bio-organic nanoelectronic devices resides in the strong charge recombination that is present at the different interfaces forming the complex system. An efficient way to overcome this bottleneck is to add a self-assembled monolayer (SAM) of molecules between the biological material and electrode that promotes an efficient direct electron transfer while minimizing wasteful processes of charge recombination. In this work, the presence of a pyrene–nitrilotriacetic acid layer carrying different metal centers as the SAM is physisorbed on graphene is fully described by means of electrochemical analysis, field-emission scanning electron microscopy, photoelectrochemical characterization, and theoretical calculations. Our multidisciplinary study reveals that the metal center holds the key role in the efficient electron transfer at the interface. While Ni2+ is responsible for the electron transfer from the SAM to graphene, Co2+ and Cu2+ force an opposite transfer f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    5
    Citations
    NaN
    KQI
    []