Basilar membrane vibration after targeted removal of the third row of OHCs and Deiters cells
2018
The mammalian cochlea has three rows of outer hair cells (OHCs) that amplify the basilar membrane (BM) traveling wave with high gain and exquisite sharpness. However, it is unclear why three rows of OHCs are needed to achieve this. We used a novel transgenic mouse with the diphtheria toxin receptor in Lgr5-positive cells (Lgr5DTR-EGFP/+ mouse) that allowed us to ablate the third row of OHCs and Deiters cells (D) in adulthood via DT injection, after normal cochlear function had developed. We then used volumetric optical coherence tomography (VOCTV) to investigate the impacts of this manipulation of cochlear amplification in the apical turn. As expected, Lgr5DTR-EGFP/+ control mice had sharply-tuned vibratory responses. However, Lgr5DTR-EGFP/+ mice had broad tuning with a 20 dB increase in vibratory thresholds. The Q10dB was ∼1 in Lgr5DTR-EGFP/+ mice, whereas it was ∼3 in control mice. The characteristic frequency was lower in Lgr5DTR-EGFP/+ mice compared to controls (7.5 vs. 9.0 kHz). The gain of cochlear amplification was substantially lower in Lgr5DTR-EGFP/+ mice compared to controls (22 vs. 50). In the post-mortem period, the vibratory responses in Lgr5DTR-EGFP/+ mice were identical to controls. Together, these results demonstrate the substantial importance of the third row of OHCs and Deiters cells to normal cochlear amplification.The mammalian cochlea has three rows of outer hair cells (OHCs) that amplify the basilar membrane (BM) traveling wave with high gain and exquisite sharpness. However, it is unclear why three rows of OHCs are needed to achieve this. We used a novel transgenic mouse with the diphtheria toxin receptor in Lgr5-positive cells (Lgr5DTR-EGFP/+ mouse) that allowed us to ablate the third row of OHCs and Deiters cells (D) in adulthood via DT injection, after normal cochlear function had developed. We then used volumetric optical coherence tomography (VOCTV) to investigate the impacts of this manipulation of cochlear amplification in the apical turn. As expected, Lgr5DTR-EGFP/+ control mice had sharply-tuned vibratory responses. However, Lgr5DTR-EGFP/+ mice had broad tuning with a 20 dB increase in vibratory thresholds. The Q10dB was ∼1 in Lgr5DTR-EGFP/+ mice, whereas it was ∼3 in control mice. The characteristic frequency was lower in Lgr5DTR-EGFP/+ mice compared to controls (7.5 vs. 9.0 kHz). The gain of cochlear ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
3
Citations
NaN
KQI