Defect Engineering of Out-of-Plane Charge Transport in van der Waals Heterostructures for Bi-Direction Photoresponse.

2021 
Defects are ubiquitous in two-dimensional (2D) transition-metal dichalcogenides (TMDs), generated by the initial growth- or the postprocessing. However, the defects may play negative roles in the photoelectronic properties of TMDs due to the reduction of in-plane transport of carriers. In this work, we demonstrate that the Se-vacancy defects in MoSe2 side of the van der Waal heterostructure is able to switch direction of out-of-plane charge transport. Photoresponse spectra showed defect density enable modified surface potential of MoSe2-x, leading to the barrier reverse between graphene and MoSe2-x and switches of the photoresponse from the negative to the positive. This unexpected property stemmed from appearance of midgap states by defects at heterostructure, as demonstrated by the density functional theory calculation and scanning tunneling microscope results. MoSe2-0.2/graphene heterostructure has a broadband response ranging from 450 to 1064 nm and exhibits comparable or higher positive responsivity (5.4 × 103 A/W to -15.3 × 103 A/W at 632.8 and 5.7 × 103 A/W to -1.2 × 103 A/W at 1064 nm) to the negative one of the pristine MoSe2/graphene. Based on defect-engineered heterostructures, we construct optoelectronic OR and AND logic devices with a broadband operation. Our work elucidates an alternative avenue to tailor the out-of-plane charge transport in TMD-based heterostructure through defects, and potentially invokes applicable utilization for 2D photodetectors and optoelectronic logic gates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []