2D positive streamer modelling in NTP air under extreme pulse fronts. What about runaway electrons

2016 
Using a 2D model, an attempt is made to understand the properties and aspects of a diffuse discharge, appearing in a positive point-to-plane gap submitted to very high voltage pulses. After presenting the model, comparisons between the computed low and high pulse heights of 10 kV and 50 kV, respectively, will be shown and analysed. A streamer ionising wave is still formed, but its role in ionising a region of low field is replaced by the role of providing a plasma within which the electrons will benefit from the presence of a high electrical field meant to induce strong electron collision activities. A comparison between the aspect of the computed and experimental discharge carried out in the same conditions at 50 kV will be presented, which seems to be in agreement with the diffuse aspect. Although the difference in order of magnitude of the speed of development and the height of the current must be underlined, similarities between the structures of both situations will, however, be recognised. A high probability of obtaining highly energetic electrons and runaways (RAEs) will also be derived following a simple approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    23
    Citations
    NaN
    KQI
    []