Single Molecule Techniques for Advanced in situ Hybridization

2003 
One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []