PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron

2007 
We investigated the photovoltaic response of nanocomposites made of colloidal, infrared-sensitive, PbSe nanocrystals (NCs) of various sizes and conjugated polymers of either regioregular poly (3-hexylthiophene) (RR-P3HT) or poly- (2-methoxy-5-(2-ethylhexoxy)-1,4-phenylene vinylene) (MEH-PPV). The conduction and valence energy levels of PbSe NCs were determined by cyclic voltammetry and revealed type II heterojunction alignment with respect to energy levels in RR-P3HT for smaller NC sizes. Devices composed of NCs and RR-P3HT show good diode characteristics and sizable photovoltaic response in a spectral range from the ultraviolet to the infrared. Using these materials, we have observed photovoltaic response at wavelengths as far to the infrared as 2 μm (0.6 eV), which is desirable due to potential benefits of carrier multiplication (or multi-exciton generation) from a single junction photovoltaic. Under reverse bias, the devices also exhibit good photodiode responses over the same spectral region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    102
    Citations
    NaN
    KQI
    []