Averaging Principle and Shape Theorem for a Growth Model with Memory

2020 
We present a general approach to study a class of random growth models in $n$-dimensional Euclidean space. These models are designed to capture basic growth features which are expected to manifest at the mesoscopic level for several classical self-interacting processes originally defined at the microscopic scale. It includes once-reinforced random walk with strong reinforcement, origin-excited random walk, and few others, for which the set of visited vertices is expected to form a "limiting shape". We prove an averaging principle that leads to such shape theorem. The limiting shape can be computed in terms of the invariant measure of an associated Markov chain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []