Nano-porous Al/Au skeleton to support MnO2 with enhanced performance and electrodeposition adhesion for flexible supercapacitors

2021 
A nano-porous Al/Au skeleton is constructed to effectively improve the utilization rate of the active MnO2 and the overall adhesion between the current collector and MnO2 in an electrodeposition system. The Al/Au current collector is prepared by first forming a nano-porous structure on the surface of Al foil through etching modification, and subsequently coating an ultra-thin Au layer onto the Al foil. The active MnO2 is electrodeposited on the Al/Au current collector to fabricate a novel Al/Au/MnO2 electrode. The nano-porous skeleton supports MnO2 to grow autonomously inside-out. The ultra-thin Au layer acts as a transition layer to improve the overall conductivity of the current collector (0.35 Ω m−1) and to improve the adhesion with MnO2 as well. Owing to the highly porous structure, the electrochemical properties of the electrode are greatly improved, as evidenced by a remarkable specific capacitance of 222.13 mF cm−2 at 0.2 mA cm−2 and excellent rate capability of 63% capacitance retention at 6.0 mA cm−2. Furthermore, the assembled solid-state symmetric supercapacitor exhibits a high energy density of 0.68 mW h cm−3, excellent cyclic stability (86.3% capacitance retention after 2000 cycles), and prominent flexibility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []