Relative glycosidic bond stabilities of naturally occurring methylguanosines: 7-methylation is intrinsically activating

2019 
The frequency and diversity of posttranscriptional modifications add an additional layer of chemical complexity beyond canonical nucleic acid sequence. Methylations are particularly frequently occurring and often highly conserved throughout the kingdoms of life. However, the intricate functions of these modified nucleic acid constituents are often not fully understood. Systematic foundational research that reduces systems to their minimum constituents may aid in unraveling the complexities of nucleic acid biochemistry. Here, we examine the relative intrinsic N-glycosidic bond stabilities of guanosine and five naturally occurring methylguanosines (O2′-, 1-, 7-, N2,N2-di-, and N2,N2,O2′-trimethylguanosine) probed by energy-resolved collision-induced dissociation tandem mass spectrometry and complemented with quantum chemical calculations. Apparent glycosidic bond stability is generally found to increase with increasing methyl substitution (canonical < mono- < di- < trimethylated). Many biochemical transform...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    5
    Citations
    NaN
    KQI
    []