Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET-based study

2015 
Reactive oxygen species (ROS) mainly originating from NADPH oxidases have been shown to be involved in the carotid body (CB) oxygen-sensing cascade. For measuring ROS kinetics, type I cells of the mouse CB in an ex vivo preparation were transfected with the ROS sensor construct FRET-HSP33. After 2 days of tissue culture, type I cells expressed FRET-HSP33 as shown by immunohistochemistry. In one population of CBs, 5 min of hypoxia induced a significant and reversible decrease of type I cell ROS levels (n = 9 CBs; P < 0.015), which could be inhibited by 4-(2-aminoethyl)benzensulfonylfluorid (AEBSF), a highly specific inhibitor of the NADPH oxidase subunits p47phox and p67phox. In another population of CBs, however, 5 min of hypoxia induced a significant and reversible increase of ROS levels in type I cells (n = 8 CBs; P < 0.05), which was slightly enhanced by administration of 3 mM AEBSF. These different ROS kinetics seemed to coincide with different mice breeding conditions. Type I cells of both population...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    11
    Citations
    NaN
    KQI
    []