Three-dimensional Microwave Tomography: Waveform diversity and distributed sensors for detecting and imaging buried objects with suppressed electromagnetic interference

2008 
Microwave tomographic techniques are described in this paper for developing high-resolution images of buried targets using 3D RF CAT Scans with frequency, angular, and polarization diversity and distributed sensors. Surface-contact sensors are used to collect the tomographic data for relay to a circling UAV and transmission to a remote control site (using layered sensing). 3D imaging algorithms have been developed to detect, image, and characterize buried targets. Distributed transmitters and receivers significantly increase unwanted mutual coupling and EM emissions (EMI) that interfere with signal reception, but also increase image resolution. For Ground Penetration (GPEN), reduced mutual coupling and EMI, and improved signal-to-noise ratios (SNR), can be achieved by embedding the transmitter/receiver sensors underground. Simple surface SAR experiments have been performed to detect deep mine shafts at the Zinc Corporation of America. 2D sensor data have been used to validate the 3D processing algorithms. Scale-model lab tests in the DETECT Chamber at AFRL have also been performed to optimize the tomographic images. In addition, WIPL-D models have been used to simulate the embedded and diverse/distributed sensors and to verify the significant enhancement in the received SNR for GPEN obtained by burying the radiating ring under the surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    2
    Citations
    NaN
    KQI
    []