Forensic characterization of 124 SNPs in the central Indian population using precision ID Identity Panel through next-generation sequencing

2021 
With the advent of next-generation sequencing technology, SNP markers are being explored as a useful alternative to conventional capillary electrophoresis–based STR typing. Low mutation rate and short-sized amplicons are added advantages of SNP markers over the STRs. However, to achieve a sufficient level of discrimination among individuals, a higher number of SNPs need to be characterized simultaneously. Hence, the NGS technique is highly useful to analyze a sufficiently higher number of SNPs simultaneously. Though the technique is in its nascent stage, an attempt has been made to assess its usability in the central Indian population by analyzing 124 SNPs (90 autosomal and 34 Y-chromosome) in 95 individuals. Various quality parameters such as locus balance, locus strand balance, heterozygosity balance, and noise level showed a good quality sequence obtained from the Ion GeneStudio S5 instrument. Obtained frequency of SNP alleles ranged from 0.001 to 0.377 in autosomal SNPs. rs9951171 was found to be the most informative SNP in the studied population with the highest PD and lowest MP value. The cumulative MP of 90 SNPs was found to be 4.76698 × 10–37. Analysis of 34 Y-chromosome SNPs reveals 11 unique haplogroups in 54 male samples with R1a1 as the most frequent haplogroup found in 22.22% of samples. Interpopulation comparison by FST analysis, PCA plot, and STRUCTURE analysis showed genetic stratification of the studied population suggesting the utility of SNP markers present in the Precision ID Identity Panel for forensic demands of the Indian population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []