Formation of Gas Pores in Nickel Alloys and Structural Steel under Irradiation by Helium Ions

2002 
Transmission electron microscopy is used to study the development of helium porosity in binary alloys of nickel with elements possessing a different dimensional atomic mismatch with nickel – from negative (beryllium and silicon) to positive (molybdenum, tungsten, aluminum, titanium, tantalum, tin, and zirconium), in structural steels ChS-68, EP-150, and the nickel alloy KhNM. The gas pores were produced by irradiation with 40 keV He+ up to fluence 5·1020 m–2 at 650 and 20°C followed by annealing at 650°C for 1 h. It is shown that under high-temperature annealing beryllium and silicon, relative to nickel, give rise to the formation of larger bubbles, while elements with a larger positive size mismatch with nickel atoms substantially decrease the size and increase the density of the bubbles. On the whole, as atomic radius and the concentration of the alloying element increases in alloys, the gas swelling of the irradiated layer decreases. Under post-irradiation annealing, bubbles with the largest diameter and the lowest density develop in nickel. Any alloying used decreases the size and increases the density of bubbles. The data obtained are discussed from the standpoint of the formation of various vacancy complexes of helium and their thermal stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    5
    Citations
    NaN
    KQI
    []