Preparation of chain-end clickable recombinant protein and its bio-orthogonal modification.

2016 
Introducing unique functional group into protein is an attractive approach for site-selective protein modification applications. In this report, we systemically investigated four site-selective strategies to introduce azide functionality into recombinant thrombomodulin (TM456), via direct recombinant expression with unnatural amino acid, chemical, and enzymatic modification for its bio-orthogonal modification application. First, a straightforward recombinant method to express TM456 with azide functionality near C-terminus by replacing methionine with azidohomoanlanine from methionine auxotroph Escherichia coli cell was investigated. Next, a sortase-mediated ligation (SML) method to incorporate azide functionality into the C-terminus of recombinant TM456 was demonstrated. The third is to add azide functionality to the N-terminal amine of recombinant TM456via amidation chemistry, and the fourth is tyrosine selective three-component Mannich reaction to introduce azide functionality to recombinant TM456. Overall, SML of recombinant protein affords the highest overall yield for incorporating azide functionality into the C-terminus recombinant TM456 since the key protein expression step uses natural amino acids. Also, single site modification facilitates the highest TM456 activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []