Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae)

2018 
The extent to which phylogenetic biome conservatism vs biome shifting determines global patterns of biodiversity remains poorly understood. To address this question, we investigated the biogeography and trajectories of biome and growth form evolution across the Caesalpinia Group (Leguminosae), a clade of 225 species of trees, shrubs and lianas distributed across the Rainforest, Succulent, Temperate and Savanna Biomes. We focused especially on the little‐known Succulent Biome, an assemblage of succulent‐rich, grass‐poor, seasonally dry tropical vegetation distributed disjunctly across the Neotropics, Africa, Arabia and Madagascar. We reconstructed a time‐calibrated phylogeny, assembled species occurrence data and assigned species to areas, biomes and growth forms. These data are used to estimate the frequency of transcontinental disjunctions, biome shifts and evolutionary transitions between growth forms and test for phylogenetic biome conservatism and correlated evolution of growth forms and biome shifts. We uncovered a pattern of strong phylogenetic Succulent Biome conservatism. We showed that transcontinental disjunctions confined within the Succulent Biome are frequent and that biome shifts to the Savanna, Rainforest and Temperate Biomes are infrequent and closely associated with shifts in plant growth forms. Our results suggest that the Succulent Biome comprises an ecologically constrained evolutionary arena spanning large geographical disjunctions across the tropics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    24
    Citations
    NaN
    KQI
    []