Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS

2012 
Abstract Multifunctional magnetic–plasmonic Fe 3 O 4 –Au core–shell nanoparticles (Au-MNPs) were prepared for simultaneous fast concentration of bacterial cells by applying an external point magnetic field, and sensitive detection and identification of bacteria using surface-enhanced Raman spectroscopy (SERS). We demonstrated that a spread of a 10 μL drop of a mixture of 10 5  cfu/mL bacteria and 3 μg/mL Au-MNPs on a silicon surface can be effectively condensed into a highly compact dot within 5 min by applying an external point magnetic field, resulting in 60 times more concentrated bacteria in the dot area than on the spread area without concentration. Surrounded by dense uniformly packed Au-MNPs, bacteria can be sensitively and reproducibly detected directly using SERS. The principle component analysis (PCA) showed that three different Gram-negative bacterial strains can be clearly differentiated. We also demonstrated that the condensed multifunctional Au-MNPs dot can be used as a highly sensitive SERS-active substrate and a limit of detection better than 0.1 ppb was obtained in detection of small molecules such as 4-mercaptopyrine. This novel platform significantly simplifies the concentration and detection process, which holds great promise for applications in food safety, environmental monitoring, medical diagnoses, and chemical and biological threat detections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    101
    Citations
    NaN
    KQI
    []