Impact of DNA extraction and sampling methods on bacterial communities monitored by 16S rDNA metabarcoding in cold smoked salmon and processing plant surfaces

2021 
Abstract Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3–V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and β diversity analyses revealed that DNA extraction methods mainly influence the observed cold smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. β-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appears higher when sampled by sponging compared to swabbing. β-diversity analyses highlight that surface topology, cleaning and disinfection and sampling devices seem to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, β-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    9
    Citations
    NaN
    KQI
    []