An Ultra-Highly Parallel Polynomial Multiplier for the Bootstrapping Algorithm in a Fully Homomorphic Encryption Scheme

2020 
Fully homomorphic encryption (FHE) is a post-quantum secure cryptographic technology that enables privacy-preserving computing on an untrusted platform without divulging any secret or sensitive information. The core of FHE is the bootstrapping algorithm, which is the intermediate refreshing procedure of a processed ciphertext. However, this step has been the computational bottleneck that prevents real-world deployments among various FHE schemes. This paper, to the best of our knowledge, for the first time, presents a scalable and ultra-highly parallel design for the number theoretic transform (NTT)-based polynomial multiplier with a variable number of reconfigurable processing elements (PEs). Hence, the highest degree of acceleration can be achieved for any targeted hardware platform by implementing as many PEs as possible under the resource constraint. The corresponding addressing and scheduling schemes are also proposed to avoid memory access conflict for the PEs, which yields an extremely high utilization ratio of 99.18% on average. In addition, the latency of the proposed design with the general negative wrapped convolution algorithm is reduced by 59.20% compared to prior works.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []