Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition

2017 
Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently <1°. A rigorous sandpaper abrasion test demonstrated retention of superhydrophobic properties and superior robustness therein, while wear, anticorrosion (pH = 1–14, 72 h), and UV testing (365 nm, 3.7 mW/cm2, 120 h) were carried out to exhibit the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    43
    Citations
    NaN
    KQI
    []