An Internal Report: Experimental Proof of Dynamical Spin Shielding in Ce from Spin-Resolved Photoelectron Spectroscopy

2006 
Using Fano Effect measurements upon polycrystalline Ce, we have observed a phase reversal between the spectral structure at the Fermi Edge and the other 4f derived feature near a binding energy of 2 eV. The Fano Effect is the observation of spin polarized photoelectron emission from NONMAGNETIC materials, under chirally selective excitation, such as circularly polarized photons. Within various models, the peak at the Fermi Energy (f{sup 1} peak, quasiparticle peak, Kondo peak) is predicted to be the manifestation of the electrons which shield the otherwise unpaired spin associated with the peak at 2 eV (f{sup 0} peak or Lower Hubbard Band). Utilizing high-energy photoelectron spectroscopy, on and off resonance, the bulk nature and f-character of both features have been confirmed. Thus, observation of phase reversal between the f{sup 0} and f{sup 1} peak is a direct experimental proof of spin shielding in Ce, confirming the original model of Gunnarsson and Shoenhammer, albeit within a Hubbard picture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []