Dietary taurine modulates hepatic oxidative status, ER stress and inflammation in juvenile turbot (Scophthalmus maximus L.) fed high carbohydrate diets.

2021 
This study was conducted to explore the beneficial role of taurine against chronic high carbohydrate diet-induced oxidative stress, endoplasmic reticulum (ER) stress and inflammation, and to understand the underlying molecular mechanisms in turbot. Two 10-week feeding trials were simultaneously conducted. For the one, six experimental diets with graded levels of taurine supplementation (0, 0.4%, 0.8%, 1.2%, 1.6% and, 2.0%, respectively) and 15% of carbohydrate were used. For the other one, three graded levels of dietary taurine (0.4%, 1.2% and 2.0%, respectively) with 21% of carbohydrate were used. The results showed that higher expression level of inflammation cytokines and ER stress related genes were detected in higher dietary carbohydrate group. In both feeding trials, 1.2% of dietary taurine supplementation improved anti-oxidative status by decreasing the content of malondialdehyde, increasing the catalase activity and total anti-oxidative capacities. In feeding trial 1, appropriate taurine supplementation lowerd contents of tumour necrosis factor-a, interleukin-6, aspartate aminotransferase and alkaline phosphatase in plasma, and decreased the expressions of pro-inflammatory cytokines, such as interleukin-8 (il-8) and interferon-γ (ifn-γ). Furthermore, dietary taurine reduced ER stress by decreasing the mRNA levels of activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and G protein-coupled receptor 78. The optimal dietary taurine content was estimated as 1.40% based on the analysis of specific growth rate. In feeding trial 2, dietary taurine supplementation attenuated liver inflammation partly referring to significantly down-regulated mRNA levels of nuclear transcription factor-κB p65, ifn-γ, interleukin1β and up-regulate the transcript of ribosomal protein S6 kinase 1. Dietary taurine supplementation in feeding trial 2 significantly increased the Nrf2-related factor 2 protein level and decreased the NFκB p65 protein level only at 21% of dietary carbohydrate level. Taurine can alleviate the oxidative damage and inflammation caused by 21% of dietary carbohydrate to a certain degree. Overall, the present study confirmed that dietary taurine supplementation improved growth performance and anti-oxidative response, and reduced liver inflammatory and ER stress processes induced by high dietary carbohydrate in turbot.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    2
    Citations
    NaN
    KQI
    []