Normal contact stiffness of fractal rough surfaces

2014 
We used the fractal theory based on a single variable Weierstrass–Mandelbrot function to obtain the normal contact stiffness if rough and smooth isotropic surfaces are pressed against each other. Because in the original fractal theory the distribution of contact area is assumed geometrically, we propose the method in which the actual deformation of asperities and a correction due to asperity coupling (interaction) will be taken into account. This correction is equivalent to an increase of the effective separation by a quantity proportional to the nominal pressure and it has a significant effect on contact stiffness at larger normal loads (low separations). The numerical results demonstrate a nonlinear evolution of the contact stiffness with the normal load in particular in the first stage of loading at low squeezing pressures. We have compared the results of the theoretical contact stiffness using the fractal method with the experimental ultrasonic measurements. Experimental results made on real surfaces agree remarkably well with the theoretical predictions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    28
    Citations
    NaN
    KQI
    []