Effect of rotation in magneto-thermoelastic transversely isotropic hollow cylinder with three-phase-lag model

2019 
AbstractThis article deals with the various heat source responses in a transversely isotropic hollow cylinder under the purview of three-phase-lag (TPL) generalized thermoelasticity theory. In presence of magnetic field and due to the rotating behavior of the cylinder, the governing equations are redefined for generalized thermoelasticity with thermal time delay. In order to obtain the stress, displacement and temperature field, the field functions are expressed in terms of modified Bessel functions in Laplace transformed domain. When the outer radius of hollow cylinder tends to infinity, the corresponding results are discussed. Finally an appropriate Laplace transform inversion technique is adopted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    16
    Citations
    NaN
    KQI
    []