Cancellous bone from porous T{i}6Al4V by multiple coating technique

2006 
A highly porous T{i}6Al4V with interconnected porous structure has been developed in our previous study. By using a so-called “Multiple coating” technique, the porous T{i}6Al4V can be tailored to resemble cancellous bone in terms of porous structure and mechanical properties. A thin layer of T{i}6Al4V slurry was coated on the struts of base porous T{i}6Al4V to improve the pore structure. After two additional coating, pore sizes ranged from 100 μm to 700 μm, and the porosity was decreased from ∼90% to ∼ 75%, while the compressive strength was increased from 10.3 ± 3.3 MPa to 59.4 ± 20.3 MPa and the Young's modulus increased from 0.8 ± 0.3 GPa to 1.8 ± 0.3 GPa. The pore size and porosity are similar to that of cancellous bone, meanwhile the compressive strength is higher than that of cancellous bone, and the Young's modulus is between that of cancellous bone and cortical bone. Porosity, pore size and mechanical properties can be controlled by the parameters in such multiple coating processes. Therefore the porous T{i}6Al4V with the characteristics of cancellous bone is expected to be a promising biomaterial for biomedical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    29
    Citations
    NaN
    KQI
    []