Simulation study of mixed-impurity seeding with extension of integrated divertor code SONIC

2020 
Aiming at obtaining key physics which determines the controllability of impurity transport in the Scrape-Off Layer (SOL)/divertor regions, the integrated divertor code SONIC code has been further extended to handle three or more impurity species kinetically. The extended SONIC code has been applied to the steady-state high-beta scenario-like plasma of JT-60SA as a testbed. We first performed a Ne transport simulation on the fixed Ar-seeded background plasma. Different radiation power distribution along the magnetic field line has been obtained between Ar and Ne. The Ar radiation is strong around the top region of the SOL, which is mainly due to the line radiation of highly charged Ar ions trapped by the thermal force. In contrast, the Ne radiation is strong around the high field side near the X point mainly due to the line radiation of Ne7+ trapped by the balance between the thermal force and the friction force with D+ parallel flow. We performed a parametric survey of Ne seeding rate as a second step. The effects of Ne transport to the plasma is self-consistently computed. The Ne impurities are injected to the plasma with the fixed puff rate of Ar. Even a small Ne seeding rate of 0.02 Pa m3/s results in lower Ar radiation power in the SOL and core edge than Ar-only case. This is mainly due to the high D+ parallel flow velocity towards the inner divertor in Ar + Ne seeding case. The resultant friction force has transported the Ar impurities towards the inner divertor region. When the line radiation of Ne7+ is switched off in the simulation, such high D+ parallel flow cannot be seen. Above results suggest that the line radiation of Ne7+ has a key role for the high D+ parallel flow. The results show a possibility of impurity transport control in the SOL by mixed-impurity seeding operation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []