Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction.

2020 
Direct visualization of spatiotemporal evolution of molecules and active sites during chemical transformation in individual catalyst crystal will accelerate the intuitive understanding of heterogeneous catalysis. So far, widespread imaging techniques can only provide limited information either with large probe molecules or in model catalyst of large size, which are beyond the interests of industrial catalysis. Herein, we demonstrate a feasible deep data approach via synergy of multiscale reaction-diffusion simulation and super-resolution structured illumination microscopy to  illustrate the dynamical evolution of spatiotemporal distributions of gas molecules, carbonaceous species and acid sites in SAPO-34 zeolite crystals of several micrometers that are typically used in industrial methanol-to-olefins process. The profound insights into the inadequate utilization of activated acid sites and rapid deactivation are unveiled. The notable elucidation of molecular reaction-diffusion process  at the scale of single catalyst crystal via this approach opens an interesting method for mechanism study in materials synthesis and catalysis. Imaging zeolites in catalysis relies on the use of probe molecules or model catalysts. Here the authors show the synergy of a multiscale reaction-diffusion model and structured illumination microscopy to illustrate spatiotemporal evolution of molecules and acid sites in SAPO-34 zeolites in methanol-to-olefins reaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    22
    Citations
    NaN
    KQI
    []