Improvement of Nonuniformity on Flatbed Scanner for Radiochromic Film Dosimetry Using Average Correction Factor with Multi-direction Scan Data

2020 
: In order to correct the lateral effect caused by the light source of the flatbed scanner in the Gafchromic film EBT3, the usefulness of the correction method using the average value of the correction coefficient considering the scan directions were evaluated. EBT3 was scanned from four directions to measure the optical density (OD) of the red, blue, and, red/blue components and the correction coefficient were calculated. For the correction coefficients, average values were calculated for the purpose of use, when the scan directions could not be aligned (average lateral effect correction). Correction accuracy was verified with the pass rate of gamma analysis (3 mm/3%, threshold 30%) of the dose distribution using the EBT3 film irradiated with the step pattern. OD of the red, blue, and, red/blue components in the scanning vertical direction tended to be higher in the center than in the peripheral portion. The pass rate of the step pattern was the red component's before correction, from 26.9 to 45.1% (before correction), from 84.1 to 96.7% (after correction), the red/blue component, from 37.6 to 48.4% (before correction) and from 84.4 to 96.7% (after correction). When using the correction coefficient using the average value, the pass rate was 89.8% for the red component and 94.7% for the red/blue component. The lateral effect correction improves the accuracy of the dose distribution verification, and the correction coefficient using the average value is useful when the scanning direction is different from that at the time of obtaining the dose concentration curve.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []