TWO-DIMENSIONAL NUMERICAL SIMULATION OF THE COMBINED HEAT TRANSFER IN CHANNEL FLOW

2014 
A numerical investigation was conducted to analyze the flow field and heat transfer characteristics in a vertical channel with radiation and blowing from the wall. Hydrodynamic behaviour and heat transfer results are obtained by the solution of the complete Navier–Stokes and energy equations using a control volume finite element method. Turbulent flow with "Low Reynolds Spalart-Allmaras Turbulence Model" and radiation with "Discrete Transfer Radiation Method" had been modeled. In order to have a complete survey, this article has a wide range of study in different domains including velocity profiles at different locations, turbulent viscosity, shear stress, suctioned mass flow rate in different magnitude of the input Rayleigh number, blowing Reynolds number, radiation parameter, Prandtl number, the ratio of length to width and also ratio of opening thickness to width of the channel. In addition, effects of variation in any of the above non-dimensional numbers on parameters of the flow are clearly illustrated. At the end resultants had been compared with experimental data which demonstrated that in the present study, results have a great accuracy, relative errors are very small and the curve portraits are in a great agreement with real experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    8
    Citations
    NaN
    KQI
    []