Going beyond structure: Nickel-substituted rubredoxin is a mechanistic model for the [NiFe] hydrogenases

2018 
Well-defined molecular systems for catalytic hydrogen production that are robust, easily generated, and active under mild aqueous conditions remain underdeveloped. Nickel-substituted rubredoxin (NiRd) is one such system, featuring a tetrathiolate coordination environment around the nickel center that is identical to the native [NiFe] hydrogenases and demonstrating hydrogenase-like proton reduction activity. However, until now, the catalytic mechanism has remained elusive. In this work, we have combined quantitative protein film electrochemistry with optical and vibrational spectroscopy, density functional theory calculations, and molecular dynamics simulations to interrogate the mechanism of H2 evolution by NiRd. Proton-coupled electron transfer is found to be essential for catalysis. The coordinating thiolate ligands serve as the sites of protonation, a role that remains debated in the native [NiFe] hydrogenases, with reduction occurring at the nickel center following protonation. The rate-determining st...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    117
    References
    31
    Citations
    NaN
    KQI
    []