Satellite Microwave Radar Observations of Antarctic Sea Ice

1998 
Historical data on Antarctic sea ice extent and concentration have traditionally been derived from visible and near-infrared images acquired by the polar-orbiting National Oceanic and Atmospheric Agency’s (NOAA) meteorological satellites, using the Advanced Very High Resolution Radiometer (AVHRR), and more recently by the Defense Meteorological Satellite Program’s Operational Linescan System (OLS) (Massom 1991). The limitation of these systems is that the majority of energy imparted to the Antarctic sea-ice system is transferred during frequent episodic storm bursts, caused by fast-moving low pressure systems (McPhee et al. 1996). Since the Southern Ocean sea-ice cover is completely bounded at its lower latitude limit by open ocean, these “polar lows” transport large amounts of moisture (contained in warm air masses) over the outer ice cover. The result is that most, if not all, noteworthy periods of wind- and temperature-driven dynamic changes in the ice cover are accompanied by periods where the region is blanketed by cloud, and when the atmosphere is inherently more electromagnetically opaque. During storms, the probability with which the area is cloud covered is extremely high, thereby ruling out use of visible or near-infrared images as a practical method of monitoring the associated changes in ice conditions. Instead, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and DMSP Special Sensor Microwave/Imager (SSM/I) have been the primary workhorses to build up a microwave record of Antarctic sea-ice characteristics. Similar problems, however, occur in passive microwave retrievals of sea-ice concentration, and the algorithms are called into question during these periods of change. Oelke (1997) discovers that the influence of water vapor in the atmosphere alone can modify the ice concentration retrievals by fractions exceeding 10%, and that retrievals of ice concentration must compensate for the atmospheric water vapor and liquid water contents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    31
    Citations
    NaN
    KQI
    []