Attack Modelling and Detection in Distributed and Cooperative Controlled Microgrid Systems

2021 
Modern low-voltage microgrid systems rely on distributed and cooperative control approaches to guarantee safe and reliable operational decisions of their inverter-based distributed generators (DGs). However, many sophisticated cyber-attacks can target these systems, deceive their traditional detection methods and cause a severe impact on the power infrastructure. In this thesis, we systematically study the vulnerabilities and threats of distributed controlled microgrid systems. We design a novel attack named "measurement-as-reference" (MaR) attack and take it as a typical stealthy attack example to theoretically analyze the attack impact on the microgrid system and use numerical simulation results to verify the analysis. We provide mathematical models of possible false data injection (FDI) and denial of service (DoS) attacks in a representative distributed and cooperative controlled microgrid system. We propose a secure control framework with an attack detection module based on machine learning techniques. To validate the effectiveness of this framework, we implement two typical attacks, MaR attack and delay injection attack, on a hardware platform modeled after a microgrid system. We collect datasets from the platform and validate the performance of multiple categories of machine learning algorithms to detect such attacks. Our results show that tree-based classifiers (Decision Tree, Random Forest and AdaBoost) outperform other algorithms and achieve excellent performance in detecting normal behavior, delay injection and false data attacks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []