Extending high order derivatives for special differential equations of the form \(y' = f(y)\) by using monotonically labeled rooted trees.

2015 
This paper presents a review of the role played by labeled rooted trees to obtain derivatives for numerical solution of initial value problems in special case \(y' = f(y), y(x_0) = y_0\). We extend a process to find successive derivatives according to monotonically labeled rooted trees, and prove some relevant lemmas and theorems. In this regard, the  derivatives, of the monotonically labeled rooted trees with n vertices are presented by using the monotonically labeled rooted trees with k + n vertices. Eventually, this process is applied to trees without labeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []