Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna

2020 
Abstract Dense (1-x)wt%CaSnSiO5-xwt%K2MoO4 (CSSO-KMO) composite ceramics were fabricated by the cold sintering process at 180 °C under 400 MPa for 60 min. X-ray diffraction, Energy dispersive X-ray and Raman spectroscopy confirmed that CSSO and KMO coexisted without intermediate phases. As KMO weight fraction increased, relative permittivity (er) and temperature coefficient of resonant frequency (τf) decreased and the microwave quality factor (Q×f, where f is resonant frequency) increased. Near-zero τf (-0.5 ppm/°C) was obtained for 65 wt%CSSO-35 wt%KMO with er ∼ 9.2 and Q×f ∼ 6240 GHz. No chemical reaction between ceramic composites and silver was observed, demonstrating potential for cofiring with Ag-paste. A prototype antenna was fabricated from 65 wt%CSSO-35 wt%KMO composite ceramic with a bandwidth of 144 MHz @ -10 dB, a gain of 5.7 dBi and a total efficiency of 88.4 % at 5.2 GHz, suitable for 5 G mobile communication systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    10
    Citations
    NaN
    KQI
    []