CZ-7, a new derivative of Claulansine F, promotes remyelination induced by cuprizone by enhancing myelin debris clearance.

2020 
Abstract The mechanism of demyelinating diseases is controversial, while demyelination and remyeliantion disorder is the acknowledged etiology and therapeutic target. Untill now, there is no efficient therapy for these diseases. CZ-7, a new derivative of Claulansine F, which has been reported before, were investigated its pro-remyelination effect and its associated mechanism in cuprizone (CPZ)-induced demyelination model. In this study, male C57BL/6 mice were subjected to CPZ (300 mg/kg) through intragastric gavage and were orally administered CZ-7 (20 mg/kg) meanwhile. The results of weight monitoring and behavioral testing showed that CZ-7 can significantly improve behavior dysfunction in the demyelinating mice. Luxol-fast blue (LFB) staining, myelin basic protein (MBP) immunostaining, transmission electron microscopy (TEM) and QPCR results indicated the therapeutic effect of CZ-7 on CPZ mice model. Furthermore, degraded myelin basic protein (dMBP) immunofluorescent staining and oil red O staining showed that CZ-7 contributed to the clearance of degraded myelin debris. More microglia displayed phagocytic shape assembled in corpus callosum (CC) and there was an active process of phagocytosis in microglia after CZ-7 treatment. Immunofluorescent staining and QPCR analysis revealed the M2-polarized phenotype switch of microglia in the process of myelin debris removel, which demostrated the microenvironment improvement of CZ-7. Moreover, immunofluorescent staining of NG2 and O4 demonstated that more oligodendrocyte precursor cells (OPCs) existed in CC after CZ-7 treatment. In conclusion, our results demonstrated CZ-7 has a potential therapeutic effect for MS and other demyelinating diseases through enhancing myelin debris clearance to improve the microenvironment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    3
    Citations
    NaN
    KQI
    []