Structure of tetragonal hen egg-white lysozyme at 0.94 Å from crystals grown by the counter-diffusion method

2001 
Very high quality crystals of tetragonal hen egg-white lysozyme were grown in the Advanced Protein Crystallization Facility (APCF) on board the Space Shuttle using a modified free-interface diffusion (FID) reactor designed ad hoc to have a longer diffusion path. This design allows the performance of true counter-diffusion experiments. Crystals were obtained under the classical chemical conditions defined 50 y ago with NaCl as a crystallizing agent and acetate pH 4.5 as a buffer. Counter-diffusion crystallization allows a `physical' instead of chemical optimization of growth conditions: indeed, this method screens for the best supersaturation conditions in a single trial and yields crystals of very high quality. A complete diffraction data set was collected at atomic resolution from one of these crystals using synchrotron radiation at the DESY–EMBL beamlines. The overall Rmerge on intensities in the resolution range 31–0.94 A was 5.2% and the data were 98.9% complete. Refinement was carried out with the programs CNS and SHELX97 to a final crystallographic R factor of 12.26% for 72 390 reflections. A mean standard uncertainty in the atomic positions of 0.024 A was estimated from inversion of blocked least-squares matrices. 22 side chains show alternate conformations and the loop 59–75 adopts in the same crystal packing two conformations that were observed for either triclinic or tetragonal lysozyme in previous high-resolution studies. In addition to 255 water molecules, the crystallizing agent (one hexacoordinated sodium ion and five chloride anions) participates in the ordered lysozyme hydration shell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    83
    Citations
    NaN
    KQI
    []