Ultra‐Permeable Single‐Walled Carbon Nanotube Membranes with Exceptional Performance at Scale

2020 
Enhanced fluid transport in single-walled carbon nanotubes (SWCNTs) promises to enable major advancements in many membrane applications, from efficient water purification to next-generation protective garments. Practical realization of these advancements is hampered by the challenges of fabricating large-area, defect-free membranes containing a high density of open, small diameter SWCNT pores. Here, large-scale (≈60 cm2) nanocomposite membranes comprising of an ultrahigh density (1.89 × 1012 tubes cm-2) of 1.7 nm SWCNTs as sole transport pathways are demonstrated. Complete opening of all conducting nanotubes in the composite enables unprecedented accuracy in quantifying the enhancement of pressure-driven transport for both gases (>290× Knudsen prediction) and liquids (6100× no-slip Hagen-Poiseuille prediction). Achieved water permeances (>200 L m-2 h-1 bar-1) greatly exceed those of state-of-the-art commercial nano- and ultrafiltration membranes of similar pore size. Fabricated membranes reject nanometer-sized molecules, permit fractionation of dyes from concentrated salt solutions, and exhibit excellent chemical resistance. Altogether, these SWCNT membranes offer new opportunities for energy-efficient nano- and ultrafiltration processes in chemically demanding environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    6
    Citations
    NaN
    KQI
    []