A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy

2021 
Design and exploitation of flame retardant polymers with high electrical conductivity are desired for polymer applications in electronics. Herein, a novel phosphorus-nitrogen intumescent flame retardant was synthesized from pentaerythritol octahydrogen tetraphosphate, phenylphosphonyl dichloride, and aniline. Low-density polyethylene was combined with the flame retardant and multi-walled carbon nanotubes to form a nanocomposite material via a ball-milling and hot-pressing method. The electrical conductivity, mechanical properties, thermal performance, and flame retardancy of the composites were investigated using a four-point probe instrument, universal tensile machine, thermogravimetric analysis, and cone calorimeter tests, respectively. It was found that the addition of multi-walled carbon nanotubes can significantly improve the electrical conductivity and mechanical properties of the low-density polyethylene composites. Furthermore, the combination of multi-walled carbon nanotubes and phosphorus-nitrogen flame retardant remarkably enhances the flame retardancy of matrixes with an observed decrease of the peak heat release rate and total heat release of 49.8% and 51.9%, respectively. This study provides a new and effective methodology to substantially enhance the electrical conductivity and flame retardancy of polymers with an attractive prospect for polymer applications in electrical equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []