Expansions in Cantor real bases
2021
We introduce and study series expansions of real numbers with an arbitrary Cantor real base $$\varvec{\beta }=(\beta _n)_{n\in {\mathbb {N}}}$$
, which we call $$\varvec{\beta }$$
-representations. In doing so, we generalize both representations of real numbers in real bases and through Cantor series. We show fundamental properties of $$\varvec{\beta }$$
-representations, each of which extends existing results on representations in a real base. In particular, we prove a generalization of Parry’s theorem characterizing sequences of nonnegative integers that are the greedy $$\varvec{\beta }$$
-representations of some real number in the interval [0, 1). We pay special attention to periodic Cantor real bases, which we call alternate bases. In this case, we show that the $$\varvec{\beta }$$
-shift is sofic if and only if all quasi-greedy $$\varvec{\beta }^{(i)}$$
-expansions of 1 are ultimately periodic, where $$\varvec{\beta }^{(i)}$$
is the i-th shift of the Cantor real base $$\varvec{\beta }$$
.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
9
References
0
Citations
NaN
KQI