The additive effects of oil exposure and hypoxia on aerobic performance in red drum (Sciaenops ocellatus)

2020 
Abstract Aerobic scope, the difference between standard metabolic requirements and maximum metabolic capacity, is considered a particularly important metric influencing ecological success in fishes. Crude oil exposure can impair cardiorespiratory function in fishes, which reduces maximum metabolic rate, aerobic scope, and may impair ecological performance. Oil exposure is not the only environmental stressor that can affect aerobic scope, especially in areas affected by crude oil spills. Hypoxia (low dissolved oxygen) is also known to constrain maximum metabolic rate, yet there has been little effort to explore how hypoxia may influence the magnitude of metabolic injury following oil exposure. Therefore, our goal was to investigate the effects of acute oil exposure and hypoxia on the metabolic performance of red drum (Sciaenops ocellatus), an economically important fish common in the Gulf of Mexico. Here, sub-adult red drum were exposed to crude oil for 24 h before being exposed to hypoxic conditions following exhaustive exercise. Our results show that hypoxia exposure combined with crude oil exposure results in significantly reduced aerobic scope, which was additive compared to the reductions caused by each stressor alone. We also quantified hypoxia tolerance among treatments following exposure, and our results showed no changes to hypoxia tolerance among individuals, regardless of exposure to hypoxia or oil. These data offer insight into the metabolic constraints facing fishes exposed to oil while concurrently subjected to hypoxia, a notable climate change stressor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    12
    Citations
    NaN
    KQI
    []