On one generalization of the elliptic law for random matrices

2014 
We consider the products of $m\ge 2$ independent large real random matrices with independent vectors $(X_{jk}^{(q)},X_{kj}^{(q)})$ of entries. The entries $X_{jk}^{(q)},X_{kj}^{(q)}$ are correlated with $\rho=\mathbb E X_{jk}^{(q)}X_{kj}^{(q)}$. The limit distribution of the empirical spectral distribution of the eigenvalues of such products doesn't depend on $\rho$ and equals to the distribution of $m$th power of the random variable uniformly distributed on the unit disc.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    2
    Citations
    NaN
    KQI
    []