A Fast Volume Integral Equation Solver with Linear Basis Functions for the Accurate Computation of EM Fields in MRI

2020 
A stable volume integral equation (VIE) solver based on polarization/magnetization currents is presented, for the accurate and efficient computation of the electromagnetic (EM) scattering from highly inhomogeneous and high contrast objects. We employ the Galerkin method of moments to discretize the formulation with discontinuous piecewise linear basis functions on uniform voxelized grids, allowing for the acceleration of the associated matrix-vector products in an iterative solver, with the help of FFT. Numerical results illustrate the superior accuracy and more stable convergence properties of the proposed framework, when compared against standard low-order (piecewise constant) discretization schemes and a more conventional VIE formulation based on electric flux densities. Finally, the developed solver is applied to analyze complex geometries, including realistic human body models, typically used in modeling the interactions between EM waves and biological tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    1
    Citations
    NaN
    KQI
    []