Inhibition of miR-9 attenuates fibroblast proliferation in human hyperplastic scar by regulating TGF-β1.

2019 
: Healing of damaged tissue results in scar development, which can be difficult to manage. The present study was performed to determine the effects of inhibition of the microRNA (miR), miR-9, on the proliferation of fibroblasts in human hyperplastic scar (HS) formation. Samples of HS tissue and normal tissue were isolated from 20 patients, and the fibroblasts were transfected with small-interfering RNA (siRNA) for transforming growth factor beta 1 (TGF-β1), miR-9 mimic, and miR-9 inhibition. TGF-β1 protein and mRNA expression were examined in the fibroblasts and HS tissue samples by Western blotting and RT-PCR, respectively. Moreover, the effects of miR-9 inhibitor and mimic on cell proliferation and apoptosis were also examined in the HS tissue. Protein and mRNA expression levels of TGF-β1 were increased in the HS tissue compared to adjacent normal tissues. The levels of TGF-β1 mRNA and protein expression were reduced in siRNA-transfected cells. The miR-9 and TGF-β1 mRNA expression levels were reduced in the miR-9 inhibitor treatment group compared to both the negative control (NC) and control groups. Reduced levels of miR-9 and TGF-β1 mRNA expression were observed in the miR-9 inhibitor treatment group compared to the NC and control groups. Moreover, miR-9 inhibitor increased the percentage of apoptotic cells and decreased cell proliferation compared to the NC and control groups. In conclusion, this study showed that miR-9 plays an important role in the proliferation of fibroblasts by regulating TGF-β1 expression in HS tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []