Probiotic Enterococcus faecalis Symbioflor® down regulates virulence genes of EHEC in vitro and decrease pathogenicity in a Caenorhabditis elegans model

2017 
Enterohemorrhagic E. coli O157:H7 (EHEC) shorten the lifespan of Caenorhabditis elegans compared to avirulent bacteria. Co-feeding EHEC with Enterococcus faecalis Symbioflor® significantly increased the worms’ lifespan. The transcriptome of EHEC grown in vitro with or without Symbioflor® was analyzed using RNA-seq. The analysis revealed downregulation of several virulence-associated genes in the presence of Symbioflor®, including virulence key genes (e.g., LEE, flagellum, quorum-sensing). The downregulation of the LEE genes was corroborated by lux-transposon mutants. Upregulated genes included acid response genes, due to a decrease in pH exerted by Symbioflor®. Further genes indicate cellular stress in EHEC (e.g. prophage/mobile elements involved in excision, cell lysis, and cell division inhibition). Thus, the observed protection of C. elegans during an EHEC infection by the probiotic Symbioflor® is suggested to be caused by triggering concomitant transcriptomic changes. To verify the biological relevance of this modulation, exemplary genes found to be influenced by Symbioflor® were knocked out (fliD, espB, Z3136, Z3917, and L7052). The lifespan of nematodes changed when using knock-outs as food source and the effect could be complemented in trans. In summary, Symbioflor® appears to be a protective probiotic in the nematode model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    14
    Citations
    NaN
    KQI
    []