Mechanistic investigation of the simultaneous addition and free-radical polymerization in batch miniemulsion droplets: Monte Carlo simulation versus experimental data in polyurethane/acrylic systems

2014 
Abstract A detailed kinetic Monte Carlo simulation was used to predict the characteristics of the batch miniemulsion polymerization of an isocyanate and an acrylic monomer mixture that contains a hydroxyl functional monomer (HEMA). The simulation takes into account the simultaneous polyaddition of the polyurethane prepolymer with the hydroxyl group of HEMA and the free radical polymerization of the acrylic monomers and all reactions in aqueous and polymer particle phases. The model has been assessed by batch miniemulsion polymerizations carried out using an aliphatic isocyanate prepolymer, n-butyl acrylate, 2-hydroxyethyl methacrylate monomers and potassium persulfate as an initiator. It was found that partitioning of water had a significant effect on both kinetics and microstructure of the resulting polymer. Evolution of different species of PU prepolymer produced in the reaction and the sol and gel fractions revealed that the terminal pendent double bond of the HEMA in polymer chains has significantly lower reactivity than that of the HEMA free monomer. Detailed information on gel microstructure has been derived in the model by both distribution of molecular weight between crosslinking points in acrylic chains and distribution of chain extension of PU prepolymers. These crosslinking density distributions can be related to mechanical and adhesive properties of the polymer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    27
    Citations
    NaN
    KQI
    []